Tetrahedron Letters,Vol.25,No.23,pp 2427-2430,1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

STEREOCHEMICAL CORRELATIONS OF SECOIRIDOID AGLUCONES

Takafumi Ikeda and C. Richard Hutchinson* School of Pharmacy, University of Wisconsin, Madison, WI 53706

Heinrich Meier and Lutz-F. Tietze*

Institute for Organic Chemistry, George-August-University, D-3400 Gottingen, W. Germany

<u>Summary:</u> The secoiridoid, sweroside (**3a**), provides a convenient reference standard for the stereochemistry of secoiridoid aglucones that are important intermediates in the biosynthesis of plant iridoids and alkaloids. We describe how to obtain the aglucon of **3a** without C-5 epimerization or migration of the C-9,10 double bond, and physical and spectral parameters for its absolute stereochemistry through correlation with natural and synthetic compounds.

The biosynthesis of many cyclopentanomonoterpenoids $(iridoids)^1$ and the alkaloids that contain a structural subunit derived from the iridoids^{2,3} requires the cleavage of a bond (---) in loganin (1) to form the secoiridoid, secologanin (2a)⁴. The aglucon of secologanin, 2b, is involved formally in the biosynthetic pathways, but its instability towards rearrangement^{5,6} has complicated studies of its chemistry and biochemistry. The aglucon (3b) of sweroside, 3a, which is formed in vitro from 2a by reduction and lactonization⁷ as well as occurring naturally⁸, does not structurally rearrange easily⁹ but is known to undergo epimerization at C-5¹⁰. Therefore, **3b** could be a useful reference standard for the biosynthetically important secoiridoids if it can be obtained with its natural configuration at C-5, and if it can be distinguished from its configurational isomers by clear physical and chemical.

We took two approaches to providing the requisite data: synthesis of the four configurational isomers at C-5 and C-6 of the 0-methyl acetals of 3b, and isolation of the two C-5 epimers of **3b** as the anomeric mixture of their C-9,10 dihydro derivatives. The spectral data for these compounds permitted a clear distinction among the various configurational isomers. Furthermore, we were able to isolate the aglucon of 9,10-dihydro-**3a** by an experimental protocol that is useful for the isolation of C-3 acetal-protected secologanin aglucon.

The synthesis of the 0-methyl acetals of 3b cannot be done in a straightforward manner from sweroside, since treatment of **3a** with betaglucosidase in citrate buffer, pH 5, at room temperature (8 hr) usually gives only the C-5 epimer of $3b^{11}$. Therefore, we developed a total synthesis of (-)-0-methyl sweroside aglucon from $(+)-4^{12}$, which was used to provide the two C-6 epimers, 5a and 5b, of 6-0-methyl sweroside aglucon for this study. The two C-6 epimers of 5epi-5-0-methyl sweroside aglucon were prepared from 5-epi-3b by treatment of crude "sweroside aglucon" with 2,2-dimethoxypropane/methanol plus a catalytic amount of p-toluenesulfonic acid at reflux (8 hr). Two types of products resulted from this procedure: a 2:1 mixture of the desired 6-0-methyl acetals (43% yield), and a structural rearrangement product (31% yield). These could be distinguished easily by the much greater tlc mobility of the rearrangement product (7) versus the mixture of the C-6 O-methyl acetals (6a and 6b), and by the absence of the signals for the C-6 OCH₃ and C-3 OCH₂ in the 1 H NMR of 7 versus **6a** and **6b** (Table 1). We encountered 7 with several of the standard methods for the formation of acetals at anomeric centers, but could not detect its corresponding hemiacetal in crude **3a** by nmr spectroscopy. Furuichi et al. also obtained 7, rather than 6a, as the final product in their total synthesis of (+)- $\mathbf{6a}^{13}$, which we have brought to their attention. Two other secoiridoid aglucones are known to rearrange easily to internal acetals 6,14 .

The two most useful spectral parameters for distinguishing the configuration at C-5 and C-6 of **5** and **6** are the vicinal coupling constants between the protons at C-4a and C-5 {cis=5.5 Hz;trans=11.2-11.4 Hz}, and the sign of the $[\alpha]_D$ or CD absorbance maxima for the C-6 isomers of **5** and **6** (Table 2).

(ð)e	5a	5b	6a	6b ^b	7
Positio	<u>n</u>				
3	4.42(ddd)	4.44(ddd)	4.47(ddd)	4.47(ddd)	3.58-
	4.24-4.34(m)	4.22-4.32(m)	4.28(ddd)	4.23(ddd)	3.84(2H,m)
4	1.85-1.60(2H,m)	1.80-1.61(2H,m)	1.94(dddd);	2.05(dddd);	1.59(ddd);
			1.49(dddd)	1.51(dddd)	2.01(ddd)
4a	2.95(dddd,5.5Hz ^C)	2.91(dddd,5.5Hz ^C)	2.61(dddd,11.4Hz ^C)	2.45(dddd,11.2Hz ^C)	3.00(m)
5	2.60(ddd)	2.71(ddd)	2.09(ddd)	2.12(ddd)	2.62(br d)
6	4.90(d,1.6Hz ^d)	5.05(d,1.8Hz ^d)	4.93(d,2.4Hz ^d)	4.81(d,8.7Hz ^d)	5.28(br s)
8	7.65(d)	7.70(d)	7.61(d)	7.70(d)	7.80(s)
9	5.52(ddd)	5.58(ddd)	5.68(ddd)	5.59(ddd)	5.54(ddd)
10	5.25(dd);5.25(dd)	5.35(dd);5.26(dd)	5.26(dd);5.22(dd)	5.32(dd);5.23(dd)	5.08(ddd);
					5.14(ddd)
со ₂ сн ₃					3.70(s)

TABLE 1. ¹H NMR SPECTRAL DATA FOR THE SWEROSIDE AGLUCON O-METHYL ACETALS^a.

<u>a</u> 60 and 200 MHz for 7; 200 MHz for 5 and 6. <u>b</u> m.p. 149-150°C. <u>c</u> $J_{4a,5}$. <u>d</u> $J_{5,6}$. <u>e</u> all spectra were run in CDC1₃; chemical shifts are relative to TMS as the external standard.

	5a	5b	6 a	6b
[a] _D a (deg)	-245(c=1.30)	+46(c=0.2)	-225(c=0.80)	+147(c=1.05)
[0] ^b	-20	+5.2	-12	+9.6
CD abs max ^C (nm)	-240	+240	-245	+242

TABLE 2. OPTICAL ROTATION AND CIRCULAR DICHROISM DATA FOR 5 AND 6.

<u>a</u> run at ambient temp in CHCl₃. <u>b</u> times 10^{+3} ; run at ambient temp in EtOH. <u>c</u> no Cotton effects were seen.

The isolation of (-)-9,10-dihydro-3b was studied as a model for the isolation of 2b. Treatment of (-)-9,10-dihydro-3b with betaglucosidase as before (48 hr) gave a 1:1 mixture of 9,10-dihydro-3b and (6RS)-5-epi-3b in 68% yield. These two C-5 epimers could be separated chromatographically (<u>t</u>-butylmethylether, silica gel), and distinguished by the ¹H NMR spectral data shown in Table 3. When the deglucosidation was done at 5°C (72 hr), the reaction mixture lyophilized, and the crude aglucon extracted with cold <u>t</u>-butylmethylether, then purified on deactivated silica gel at 5°C, pure 9,10-dihydro-3b was obtained in 38% yield as the only product without formation of its C-5 epimer. (Under such conditions, **3a** gave only its C-5 epimer.)

	Dihydro- 3b		Dihydro-5-epi- 3b		
(δ) ^e	¹ H NMR ^a	¹³ C NMR ^b	1 _{H NMR} c	¹³ C NMR ^d	
Position					
3	4.34(q, ax);	68.5	4.30;	68.3	
	4.50(ddd, eq)		4.45		
4a	3.08(dddd, J _{4a.5} =5.5 Hz)	28.0	2.53(dddd, $J_{4a,5}=13$ Hz)	29.8, 33.0	
5	1.6-2.0(m, J _{5.6} =2.0 Hz)	38.8	2.03(dddd)	42.1, 42.7	
6	5.54(d)	94.3	5.15(d), 5.53(d)	93.1, 98.2	
8	7.63(d, J _{8,4a} =2.5 Hz)	153.8	7.59(d)	153.5, 155.2	

TABLE 3. NMR SPECTRAL DATA FOR 9,10-DIHYDRO SWEROSIDE AGLUCONES.

<u>a</u> 200 MHz. <u>b</u> 50 MHz. <u>c</u> 80 MHz. <u>d</u> 25.2 MHz. <u>e</u> all spectra were run in CDCl₃ and chemical shifts are relative to TMS as the external standard.

<u>Acknowledgment</u> This research was supported by a grant from the National Institutes of Health (CA 25953), and by the Fonds des Chemischen Industrie in Germany.

References and Notes

- (1) Briggs, L.H.; Cain, B.F.; LeQuesne, P.W.; Shoolery, J.N., Tetrahedron Lett. 1968, 69.
- (2) Inouye, H.; Planta Med. 1978, 33, 193.
- (3) Cordell, G.A., "Introduction to Alkaloids. A Biogenetic Approach"; J. Wiley and Sons: New York, 1981; pp. 810-830.
- (4) Tietze, L.-F., Angew. Chem. 1983, 95, 840; Angew. Chem. Int. Ed. Engl. 1983, 22, 828.
- (5) Kinast, G.; Tietze, L.-F., Chem. Ber. 1976, 109, 3640.
- (6) Brown, R.T.; Chapple, C.L., Tetrahedron Lett. 1976, 787.
- (7) Battersby, A.R.; Burnett, A.R.; Parsons, P.G., J. Chem. Soc. 1969 C, 1187.
- (a) Inouye, H.; Ueda, S.; Nakamura, Y., <u>Tetrahedron Lett.</u> 1966, 5229. (b) Horst, H.A.; Ragad, M.S., Helv. Chem. Acta, 1967, 50, 991.
- (9) Purdy, J.; and McLean, S., Can. J. Chem. 1977, 55, 4233.
- (10) Inouye, H.I.; Yoshida, T.; Nakamura, Y.; Tobita, S., Chem. Pharm. Bull. 1970, 18, 1889.
- (11) A side product, the 5,9-double bond isomer, occassionally accompanies 5-epi-3b.
- (12) Ikeda, T.; Hutchinson, C.R., J. Org. Chem. 1984, 49, accepted.
- (13) Furuichi, K.; Abe, K.; Miwa, T., Tetrahedron Lett. 1974, 3685.
- (14) (a) Souzu, I.; Mitsuhashi, H., <u>Tetrahedron Lett.</u> 1969, 2725. (b) Miles, D.H.; Kikpol, U.; Bhattacharyya, J.; Atwood, J.L.; Stone, K.E.; Bryson, T.A.; Wilson, C., <u>J. Amer. Chem.</u> <u>Soc.</u> 1976, <u>98</u>, 1569.

(Received in USA 19 March 1984)